1)Establishing Non‐stoichiometric Ti4O7 Assisted Asymmetrical C‐C Coupling for Highly Energy‐Efficient Electroreduction of Carbon Monoxide.
Hu, X.; Xu, J.; Gao, Y.; Li, Z.; Shen, J.; Wei, W.; Hu, Y.; Wu, Y.; Wang, Y.;
Angewandte Chemie - International Edition., 2024, e202414416.
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202414416
2)Stable Cu+/Cu2+ Species Derived from in-situ Growing Cu-S-V Bonds in CuVxS Electrocatalysts Enables High Efficiency CO2 Electroreductionto to Methanol
Hu, X.; Zhang, Z.; Li, Z.; Wu, Y.; Wei, W.; Wang, Y.; Xu, J.; Ding, M.,
Applied Catalysis B Environment and Energy, 2024, 358, 124445
https://www.sciencedirect.com/science/article/pii/S0926337324007598
3) Breaking the Activity-Selectivity Trade-off of CO2 Hydrogenation to Light Olefins.
PNAS 2024, 121 (37), e2408297121.
Wang, X. #; Zeng, T.#; Gu, X.; Yan, Z.; Ban, H.; Yao, R.; Li, C.*; Gu, X. K.*; Ding, M.* et al.. , X.;
https://pubmed.ncbi.nlm.nih.gov/39236240/
4)Chelation and Stabilization of Dynamic Single- Atom Cu in Metal−Organic Frameworks for Selective Hydrogenation Reactions.
ACS Catal. 2024, 14.
Wu, Y.; Tong, Y.; Luo, Y.; Xu, J.; Gu, X-K.; Ding, M.,
https://pubs.acs.org/doi/10.1021/acscatal.4c05097
5)Developing Multifunctional Fe-Based Catalysts for the Direct Hydrogenation of CO2 in Power Plant Flue Gas to Light Olefins.
Catalysts 2024, 14 (3).
Feng, L.; Guo, S.; Yu, Z.; Cheng, Y.; Ming, J.; Song, X.; Cao, Q.; Zhu, X.; Wang, G.; Xu, D.; Ding, M.,
https://www.mdpi.com/2073-4344/14/3/204
6)Dimethyl Carbonate Synthesis from CO2 over CeO2 with Electron-Enriched Lattice Oxygen Species.
Angewandte Chemie - International Edition 2024, 63 (19).
Hou, G.; Wang, Q.; Xu, D.; Fan, H.; Liu, K.; Li, Y.; Gu, X. K.; Ding, M.,
https://onlinelibrary.wiley.com/doi/10.1002/anie.202402053
7)Development of Mg-Modified Fe-Based Catalysts for Low-Concentration CO2 Hydrogenation to Olefins.
ACS Sustainable Chemistry and Engineering 2024, 12 (5), 2070-2079.
Liu, K.; Xu, D.; Fan, H.; Hou, G.; Li, Y.; Huang, S.; Ding, M.,
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c07514
8)In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2-CO Mutual Conversion Using Reversible Solid Oxide Cells.
Advanced Functional Materials 2024, 2403922
Luo, Y.; Zhang, D.; Liu, T.; Chang, X.; Wang, J.; Wang, Y.; Gu, X. K.; Ding, M.,
https://doi.org/10.1002/adfm.202403922
9)Selective hydrogenation of γ-valerolactone to 1,4-pentanediol over hydrotalcite-derived CuCoAl catalysts.
Fuel Processing Technology 2024, 256.
Peng, J.; Zhang, D.; Tian, X.; Ding, M.,
https://www.sciencedirect.com/science/article/pii/S0378382024000389
10)Encapsulating Fischer-Tropsch synthesis catalyst with porous graphite-carbon enables ultrahigh activity for syngas to α-olefins.
Applied Catalysis B: Environmental 2024, 353.
Wu, K.; Zhang, Z.; Shan, R.; Li, L.; Wang, J.; Hou, B.; Xu, Y.; Ding, M.,
https://www.sciencedirect.com/science/article/pii/S0926337324003813
11)Ru clusters anchored on N-doped porous carbon-alumina matrix as efficient catalyst toward primary amines via reductive amination.
Applied Catalysis B: Environmental 2024, 343.
Wu, Y.; Xu, D.; Xu, Y.; Tian, X.; Ding, M.,
https://www.sciencedirect.com/science/article/pii/S0926337323011050
12)Chemical looping oxidative dehydrogenation of ethane over Fe-Co/HZSM-5 redox catalyst.
Fuel 2024, 363.
Zhang, D.; Zhang, Y.; Tian, X.; Ding, M.,
https://www.sciencedirect.com/science/article/pii/S0016236123034567?via%3Dihub
13)Low-strain layered Zn0.56VOPO4∙2H2O as a high-voltage and long-lifespan cathode material for Zn-ion batteries.
Energy Storage Materials 2024, 66.
Zhao, D.; Pu, X.; Wang, C.; Pan, Z.; Ding, M.; Cao, Y.; Chen, Z.,
https://www.sciencedirect.com/science/article/pii/S2405829724000667
14)Electrospun 3D structured double perovskite oxide PrBa0.8Ca0.2Co2O5+δ bifunctional electrocatalyst for zinc-air battery.
Journal of the American Ceramic Society 2024, 107 (5), 3265-3276.
Zhou, J.; Wang, Y.; Zhang, D.; Zhong, D.; Liu, T.; Ding, M.,
https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.19632